
A First Guide to PostScript

Peter Weingartner

24 February, 2006

This is the fifth edition of the First Guide to PostScript. It differs from the
previous editions in that a number of errors which people have brought to my
attention have been fixed and a number of common reader questions have been
addressed. I have also added some information on how to work with colors and
raster graphics. It is my hope that this document is now stable and reasonably
error-free. If you find an error, please send me e-mail and let me know. I can’t
promise that I’ll fix it right away, but I will at least add it to my list of things
to do.

My sincere thanks goes out to everyone who has sent me e-mail concerning
the guide. Whether you were asking a question, or offering me a correction, I
sincerely appreciate it. My only regret is that I have not been able to be as
responsive to questions and corrections as I would like.

I left Indiana University quite a long time ago (nearly ten years as of the time
of this writing), and while I still have write access to my old account space I
can not be sure that I always will have access. I will maintain the original copy
at Indiana University while I have access, but from now on the official copy1

will be maintained at my personal website2, where you can also find out a little
more about me, if you are so inclined.

About this Document

This is meant to be a simple introduction to programming in the PostScript
page description language from Adobe3. This document is not meant to be
a comprehensive reference manual (although it does contain an index of some
of PostScript’s standard operators and a list of various errors). There are far
better reference books, if this is what you need. Instead, this is meant as an
easily accessible on-line tutorial. It was written with the assumption that you
have some experience programming and are familiar with concepts like arrays
and variables.

The scope of this document is fairly limited. I cover only a subset of PostScript
Level 1 (the earliest version). Since I started this guide, Adobe brought out two
revisions to the language: called Level 2 and Level 3. This document was never

1http://www.tailrecursive.org/postscript/postscript.html
2http://www.tailrecursive.org
3http://www.adobe.com

1

http://www.tailrecursive.org/postscript/postscript.html
http://www.tailrecursive.org
http://www.adobe.com

meant to cover these versions of PostScript (although the code I present here
should run just fine on a Level 2 or Level 3 capable printer). Likewise, I do not
cover any advanced printing concepts like color separations or halftone screens
(this is mainly due to ignorance on my part, I am an engineer… not a printer or
graphic designer… although I do admire good graphic design when I see it).

I have created this document because I have noticed that many people on the
Internet have been asking for some online document to get them started. I
decided that this was a good opportunity. I have benefited from the free and
open nature of the Internet (most of the software I use is freeware or shareware).
This is my opportunity to give something back to the community and to try to
perpetuate something of the original community atmosphere that existed when
I first started using it.

Contents
What is PostScript? 3

Graphics Concepts 4

Language Concepts 5

Programming in PostScript 6

Drawing and Filling Shapes 7

Putting Text on the Page 9

Adding Color 11

Transformations 12

Clipping for Effect 15

Raster Graphics 17

Encapsulated PostScript 22

Funky Stuff 23

Index of Examples 29

Index of Operators 38

Frequently Asked Questions 39

Note

PostScript is a registered trademark of Adobe Systems Incorporated. The copy-
right to the PostScript language is also held by Adobe Systems Incorporated.

2

Legal questions concerning these issues should be directed to them. Please note
that this site is not related to, supported by, or condoned by Adobe in any way.
It is an independent site and is not official.

Disclaimer

No warranty or guarantee, either expressed or implied, is made as to the correct-
ness of this document. The author can not be held responsible for any damages
that may occur through the use of any code contained herein.

You get what you paid for.

Copyright Information

4 When I first started this guide, there was no convenient way
to put something out there in such a way that you could keep the copyright,
but still allow people to make copies or even derivative works. Now there is,
through the joys of the Creative Commons5. So, since the Creative Commons li-
censes are now available, this new version is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 2.5 License6.

What is PostScript?

PostScript is a programming language optimized for printing graphics and text
(whether on paper, film, or CRT is immaterial). In the jargon of the day, it is
a page description language. It was introduced by Adobe in 1985 and first
(to my knowledge) appeared in the Apple LaserWriter. The main purpose of
PostScript was to provide a convenient language in which to describe images in
a device independent manner. This device independence means that the image
is described without reference to any specific device features (e.g. printer resolu-
tion) so that the same description could be used on any PostScript printer (say,
a LaserWriter or a Linotron) without modification. In practice, some PostScript
files do make assumptions about the target device (such as its resolution or the
number of paper trays it has), but this is bad practice and limits portability.

The language itself, which is typically interpreted, is stack-based in the same
manner as an RPN calculator. A program pushes arguments for an operator
onto a stack and then invokes the operator. Typically, the operator will have
some result which is left at the top of the stack. As an example, let us say we
want to multiply 12 and 134. We would use the following PostScript code:
12 134 mul

4http://creativecommons.org/licenses/by-nc-sa/2.5/
5http://www.creativecommons.org
6http://creativecommons.org/licenses/by-nc-sa/2.5/

3

http://creativecommons.org/licenses/by-nc-sa/2.5/
http://www.creativecommons.org
http://creativecommons.org/licenses/by-nc-sa/2.5/

The first two words “12” and “134” push the numbers 12 and 134 onto the
stack. “mul” invokes the multiply operator which pops two values off the stack,
multiplies them, and then pushes the result back onto the stack. The resulting
value can be left there to be used by another operator later in the program.

To follow the conventions used by Adobe in their manuals, I will synopsize
operators using the following scheme: arg-1 arg-2 … operator result. This
scheme means that, to use operator, you must push arguments arg-1, arg-2,
and so on before invoking the operator. operator will return the result: result.
Many operators return no result (they have some side-effect); these will be
shown as returning “-”.

Graphics Concepts

There are a few concepts that you need to know about before we dive into the
language itself. These concepts are the concepts PostScript uses to describe and
manipulate images on a page. There are really only a few.

Device Space This is the coordinate space understood by the printer hardware.
This coordinate system is typically measured in terms of the device’s res-
olution. There is really nothing else that can be said about this space, as
PostScript programs are typically not expressed using it.

User Space This is the coordinate system used by PostScript programs to
describe the location of points and lines. User space is essentially the
same as the first quadrant of the standard coordinate system used in high
school math classes. Point (0, 0) is in the lower left corner. Coordinates are
real numbers, so there is no set resolution in user space. The interpreter
automatically converts user space coordinates to device space.

Current Transformation Matrix The transformation of user space coordi-
nates to device space coordinates is done through the current transforma-
tion matrix. This matrix is a three by three matrix that allows the user to
rotate, scale, and translate the entire user space within the device space.
This is the source of a lot of PostScript’s power, as will be demonstrated
later.

Path A path is a collection of (possibly disjoint) line segments and curves
arranged on the page. The path does not describe actual ink on the
paper; it merely describes an imaginary tracing over the page. There are
operators which allow the user to draw ink along the path (stroke), fill an
enclosed path with ink (fill), or clip out all future images that are outside
the path (clip).

Current Path This is the path that the PostScript program is creating at the
moment. The current path is assembled piece by piece.

Clipping Path The PostScript rendering system will ignore any part of a line
segment, curve, or bitmap that extends outside a certain region; it will
only draw the parts of those elements which are within the region. The
region is described by a path called the clipping path. The clipping path
is usually a rectangle about a quarter of an inch in from the edge of the
page, but it can easily be set by the user to an arbitrary path.

4

Graphics State This is a collection of various settings that describe the cur-
rent state of the graphics system. Things like the current path, the current
font, and the current transformation matrix make up the graphics state.
Often, a program will need to temporarily save a graphics state to be used
later. There are a couple of ways of doing this, but the easiest is to push
the state onto a special graphics state stack and pop it back later. This
can be accomplished with the gsave, and grestore operators.

Language Concepts

As a programming language, PostScript is particularly simple. There are really
only a few concepts that need to be sketched out.

Comment A comment in PostScript is any text preceded by a “%”. The special
comment “%!” as the first two characters of a PostScript program is seen
as a tag marking the file as PostScript code by many systems (including
Unix’s lpr command). It is a good idea to start every PostScript document
with a “%!”… doing so will ensure that every spooler and printer the
document may encounter will recognize it as PostScript code.

Stack There are several stacks in a PostScript system, but only two are
important for this guide: the operand stack, and the dictionary stack.
The operand stack is where arguments to procedures (or operators, in
PostScript jargon) are pushed prior to use. The dictionary stack is for
dictionaries, and it provides storage for variables.

Dictionary A dictionary is a collection of name-value pairs. All named vari-
ables are stored in dictionaries. Also, all available operators are stored in
dictionaries along with their code. The dictionary stack is a stack of all
currently open dictionaries. When a program refers to some key, the in-
terpreter wanders down the stack looking for the first instance of that key
in a dictionary. In this manner, names may be associated with variables
and a simple form of scoping is implemented. Conveniently, dictionaries
may be given names and be stored in other dictionaries.

Name A name is any sequence of characters that can not be interpreted as
a number. With the exception of spaces and certain reserved characters
(the characters “(”, “)”, “[”, “]”, “<”, “>”, “{”, “}”, “/”, and “%”) any
character may be part of a name. The name may even start with digits
(1Z is a name, for example), but you can get into problems with them
(1E10 is a real number). A name is seen as being a reference to some
value in a dictionary on the dictionary stack.

It should be noted that there are a couple of names that are legal in PostScript
which do not follow the above definition. These are the “[” and the “]” operators.
Yes, they are operators and are stored in the dictionary. Some other names that
might surprise you are: “=”, “==”, “<<”, and “>>”.

If a name is preceded by a slash, PostScript will place the name on the stack
as an operand. If the name has no slash, the interpreter will look up its value
in the dictionary stack. If the value is a procedure object, the procedure will
be evaluated. If the value is not a procedure, the value will be pushed onto the

5

operand stack.

Number PostScript supports integers and reals. You can express numbers in
two forms: radix form, and scientific notation. Radix form is a number of
the form radix#value where radix specifies the base for value. Scientific
notation is the standard mantissaEexponent form used in most languages.

String Strings are, of course, just strings of characters. There are two ways
of expressing strings in Level 1 PostScript. The most common way is to
wrap your text in parentheses. For example the string “This is a string”
would be written as (This is a string). You can also express a string
as hexadecimal codes in angle brackets. For example, the string “ABC”
would be expressed as <414243>. There are several escape codes that may
be used in the parenthesis format of strings.

Array Arrays in PostScript are like arrays in any other language. Arrays may
contain objects of different type, and they are written as a list of objects
surrounded by brackets. For instance, [12 /Foo 5] is a three element
array containing the number 12, the name Foo, and the number 5.

Procedure A procedure is your way of defining new operators. A procedure is
an array that is executable and is written with braces rather than brackets.
For example, a procedure to square the top element on the stack might
be written as: {dup mul}. We can define this procedure to be the
square operator with: /square {dup mul} def.

Programming in PostScript

Programming in PostScript is really pretty easy. The fundamentals are that you
push operands onto the operand stack by naming them, and then you invoke
the operator to use them. That’s really all there is to it. The real art is knowing
which operator to use. Operators to draw and put text on the screen will be
covered later, and these make up the bulk of PostScript code, but there are a
couple that are used mainly for maintaining the program itself.

The first of these operators is def. “def” is responsible for entering a definition
into the top-most dictionary on the dictionary stack. The top operand on the
operand stack is the value, and the operand below the value is the key (and
should be a name). Let’s say that we wanted to define the name “x” to have a
value of 5. The PostScript to do this is: /x 5 def. Notice the use of the slash
on the “x”. The slash ensures that the name “x” will be pushed onto the stack
and not any value it may already have in the dictionary stack.

“def” is also used to define new operators. The value in this case is just a
procedure. The following code defines an operator “foo” which adds its top-most
two operands and multiplies the result with the next operand on the stack: /foo
{add mul} def. Remember, operators that return results push them onto the
stack, where they may be used later.

An important point to know when defining procedures is that the elements in
the procedure are not evaluated until the procedure is invoked. That means
that in the procedure {1 2 add 3 mul}, the actual names “add” and “mul” are
stored in the array that is the procedure. This is different from an actual array

6

in which the components are evaluated when the array is created. For contrast,
the array [1 2 add 3 mul] contains one object: the number 9.

This delayed evaluation of procedure components has two important effects.
First, the definition of an operator used in a procedure is the one that is in
effect when the procedure is run, not when it is defined. Second, because each
operator has to be looked up each time the procedure is invoked, things can be
a little slow. Fortunately, PostScript provides a handy operator to replace each
name in a procedure object with its current definition. This operator is called
bind, and it can speed up your program considerably. Bind is typically used as:
/foo {add mul} bind def

This defines foo to be a procedure array with two components: the procedures
for add and mul. Note that, if add or mul is re-defined after defining foo, foo
will have the same behavior as before. Without the use of bind, foo’s behavior
would change.

Drawing and Filling Shapes

Principles

The main purpose of PostScript is to draw graphics on the page. One of the
elegant aspects of PostScript is that even text is a kind of graphic. The main
task that must be mastered, then, is constructing paths which may be used to
create the image.

To draw and fill shapes, the basic sequence is:

• Start the path with the newpath operator.
• Construct the path out of line segments and curves (the path need not be

contiguous).
• Draw the path with the stroke operator or fill it in with the fill operator.

This basic sequence can be modified to do more complicated things as we will
see later.

Drawing a Box

In this first example, we will draw a square inch box toward the lower left
corner of the page. We start off by defining a function to convert inches into
PostScript’s main unit, the point (a point is defined in PostScript as 1/72th of
an inch, which is slightly shorter than a true printer’s point of 1/72.27 inch).
The conversion is simple, we just multiply the number of inches by 72. This
gives us the function
/inch {72 mul} def

To actually draw the square, we start a new path and move the current point
to a point an inch in from both margins. This is accomplished with the code:

7

newpath
1 inch 1 inch moveto

At this point, the path contains only the point (72, 72). We add in line segments
leading away from this point with the lineto operator. This operator adds a line
segment from the current point to the point specified to lineto and makes that
point the new current point. We can build three sides of the box as follows:
2 inch 1 inch lineto
2 inch 2 inch lineto
1 inch 2 inch lineto

We can add the last line by telling PostScript to close up the path with the
smallest possible line segment. The closepath operator does this. This operator
is especially useful if you need a closed figure for filling. Once we have closed
the path, we can draw it with the stroke operator. We finish off the example by
ejecting the page (if you are using a printer). PostScript ejects a page with the
showpage operator:
closepath
stroke
showpage

You can view and try the complete example, if you like.

Refinements

The lineto operator works in absolute coordinates within user space. That is,
72 72 lineto adds a line segment from the current point to the point (72, 72)
in user space. In drawing the box, however, it is more convenient to ignore the
absolute coordinates of the box’s vertexes and think instead of the lengths and
directions of its sides. Fortunately, PostScript provides a version of lineto which
takes relative coordinates instead. This is the rlineto operator. rlineto adds the
coordinates given as operands to the coordinates of the current point in the path
to find the destination point. That is, 10 20 rlineto will draw a line from the
current point to a point 10 points to the right and 20 points toward the top of
the page. This is in contrast to 10 20 lineto which adds a line segment which
always ends at (10, 20).

To see how we can use rlineto, let’s replace the lineto lines in the last example
with the following code:
1 inch 0 inch rlineto
0 inch 1 inch rlineto
-1 inch 0 inch rlineto

This new example will draw the same figure, but it draws the lines using relative
coordinates instead of absolute. This makes it a little easier to visualize and
has the added benefit that the same code can draw the three lines at a different
location. Note that a negative relative x coordinate moves the point in the left
direction while a negative relative y coordinate moves the point down the page.

8

Filling Shapes

Filling a shape is just as easy as drawing it. You create the path using the
standard path creation operators, but instead of calling stroke at the end, you
invoke the fill operator. The fill operator will fill the path with the current ink
settings. If you want to fill a shape with a pattern, you will need to do some
special tricks which we will cover later. We will use the box from above as an
example, but we replace the original invocation of stroke with fill.

Fill uses a simple winding rule (which is described in the Programming Language
Reference Manual) to determine what parts of the page are inside or outside the
path. The regions that are inside are painted. Note that arbitrarily complex
shapes can be filled with this operator so long as you have enough memory
on your PostScript interpreter. You can easily fill in different shades and even
some patterns, but to fill an area with a complex image takes some special effects
which we will cover later.

Shading and Width

In PostScript, you can view lines as being drawn by pens that have a given
width and ink as having particular shades. You are not restricted to completely
black ink and one-point wide lines. PostScript provides two handy operators to
change these characteristics.

The setgray operator sets the intensity of the ink used in drawing lines and
filling shapes (actually, setgray affects all subsequent markings made on the
page). setgray takes a single numerical argument between 0 and 1. “0” signifies
black, and “1” signifies white. Numbers between these two values signify various
shades of gray.

The setlinewidth operator does just what its name suggests: it sets the width
of lines to be drawn. It takes a single numerical argument which is the width
of the line in points. setlinewidth affects all lines stroked after the operator is
invoked.

Both of these operators affect the markings placed on the page after they are
called… they do not effect the path until it is stroked or filled. In particular, you
can not set the width or gray level for one part of the path and then change it
for another… they are the same for all parts of the path, since it is stroked or
filled only once. Also, both of these operators affect part of the graphics state
and can be saved with gsave and restored with grestore.

I have worked up an example using both these operators. I also demonstrate
how you can use gsave and grestore to control the graphics state.

Putting Text on the Page

Printing text on a page is, understandably, a simple process. It consists basically
of these main steps:

9

• Set up a font to use
• Set the current point to where the lower left corner of the text will be
• Give the string to print to the show operator

The show operator is the basic operator for printing strings of text. It takes a
string and prints it out in the current font and with the lower left corner at the
current point. After the text has been printed, the current point is at the lower
right of the string.

Fonts

Fonts in PostScript are actually dictionaries. A font dictionary contains several
operators. Most of these operators simply set up the path for a single character
in the font. When PostScript needs to typeset an “A” in the current font, it
finds the operator specified in the font for “A” and invokes it. This operator
goes about the business of drawing the letter. This means that there is no
fundamental difference between letters and any other kind of ink on the page:
text is graphics. Furthermore, since a font is essentially just a program to draw
things, the current graphics state applies to text just as much as it applies to
lines and curves which your program draws. This is one of the most powerful
features of PostScript, as we will see later.

The fonts themselves are stored in a special dictionary of fonts, and they are
named. If you want to retrieve a font by name, you need to use the findfont
operator. findfont retrieves the font from the dictionary (if it is there) and
leaves the font on the stack. You can then specify how big the font should be
and make it the current font. The basic process for setting the font is:

• Retrieve the font from the dictionary with findfont,
• Set the size of the font with scalefont,
• Make this new font the current font with setfont

scalefont takes two arguments, the lower argument on the stack is a font dictio-
nary while the second is the size of the new font in points. scalefont returns a
new font dictionary which is the same as the old one but scaled to the given
size. setfont, on the other hand, takes a font dictionary and makes it the current
font.

For example, let us say that we want to start typesetting in Times Roman, and
we want it to be set to 20 points. The following code would set up the correct
font:
/Times-Roman findfont % Get the basic font
20 scalefont % Scale the font to 20 points
setfont % Make it the current font

Since the font “Times-Roman” is stored in a dictionary, we search for it using its
PostScript name. Your printer will usually come with a set of built in fonts and
will almost always allow you to add more. The names of the fonts available will
vary from printer to printer, but Times is almost always present. Fonts typically
come in families. “Times” is the name of the family we used here, and it has four
member fonts: Times-Roman, Times-Italic, Time-Bold, and Times-BoldItalic.

10

Showing Text

The show operator is used to typeset text on the page. It takes a single argument:
a string containing the text to be typeset. Text can be considered to be part of
the path, so you must also have set the current point with call to moveto or an
equivalent operator. A typical call to show might look like this:

newpath % Start a new path
72 72 moveto % Lower left corner of text at (72, 72)
(Hello, world!) show % Typeset "Hello, world!"

If we ran this code right after the font selection code above, we would get the
string “Hello, world!” printed an inch in from the lower left corner, and it would
be printed in 20 point Times-Roman. You can actually try this example.

Adding Color

In recent years, color printers have become more common… to the point where it
is almost impossible to buy a black-and-white printer. Fortunately, PostScript
handles color documents quite easily, and you do not have to learn much to add
color to your documents.

There are many, many ways to specify color. The science of color reproduction
and perception is very complex and encompasses physics, chemistry, physiology,
and psychology. PostScript provides a great deal of flexibility on this front,
providing several different methods for specifying color to let you get as close
as possible to the color you want specifying it in the way that is most natural
in your application. I will discuss only two methods here, however, because—
frankly—I know as much about color as a bee knows about ancient Phoenician.

RGB

The first method I will mention is the so-called RGB colorspace. In this model,
you specify the red, green, and blue components of the color you want to repro-
duce. This is model specifies color using the additive primaries and will be very
familiar to those who work with monitors and computer graphics.

To specify a color using the RGB color space, you can use the setrgbcolor opera-
tor. This operator takes three operands: the red, green, and blue components of
the color you want (0 means none, 1 means maximum). For example, to specify
red, you can write 1 0 0 setrgbcolor; and to get a dark yellow, you
can write 0.5 0 0.5 setrgbcolor. Black is 0 0 0 setrgbcolor, and
white is 1 1 1 setrgbcolor.

CMYK

Another way to specify color is through the CMYK colorspace. In this model,
you specify color using the subtractive primaries more common in the printing

11

world: cyan, magenta, and yellow. To the primaries, a black component is
added, to allow you to control the tone of the color (this is not necessary in the
RGB model, since you are controlling the intensity of the light inherently).

To specify a color using the CYMK color space, you can use the setcymkcolor
operator. This operator takes four operands: the cyan, yellow, magenta, and
black components of the color you want (0 means none, 1 means maximum).
For example, to specify red, you can write 0 1 1 0 setcymkcolor; and
to get a dark yellow, you can write 0 1 0 0.5 setcymkcolor.

One convenient property of PostScript is that color is handled as a property of
the ink in the graphics state just like the gray level. In fact, the gray level set
by setgray is really just color. What this means is that you can set the color
of a line, or the color of a fill in exactly the same way as you set the gray level.
You just call the operator before you stroke the line or fill the path. You can
even use it to set the color of text by calling the appropriate operator before
you call show.

Since color works in such a similar way to the setgray operator, I am providing
you with a complete example, but I will not break it down here.

A Warning

I have really simplified things considerably in this discussion. There are more
than just two color spaces in PostScript, and there are several features in
PostScript to allow for accurate color rendition. One thing that I’ve glossed
over is that different devices reproduce color with different degrees of accuracy
(and different pigments not only have different color-accuracy but will vary over
time). Another thing that I have glossed over is the fact that these two models
are focused around color reproduction: it is also possible to specify color based
on how it is perceived.

If you do not care about color reproduction to that level of precision, then you do
not need to worry about it. The color operators I have described are sufficient.
If you do, you know far more about the matter than I do and will likely find
the features you need described in the PLRM.

Transformations

The PostScript interpreter keeps track of a matrix called the current transfor-
mation matrix. When constructing an image, the interpreter uses this matrix
to convert the world coordinates used by the program into device coordinates
used by the printer itself. Generally, the actual contents of the matrix are of
little interest to a well-written PostScript program; the reason for this is that
the specific contents are device-dependent. A program that uses them might
not work properly. PostScript does provide a number of operators, however,
that transform the matrix in a device-independent way. These operators allow
you to transform the way user space maps onto device space, and they modify

12

the current transformation matrix with a simple matrix transformation. The
basic transformation operators are:

• rotate
• translate
• scale

It is useful to realize that the current transformation matrix (and, hence the
effect of all these operators) is part of the current graphics state and can be
saved and restored using the gsave, and grestore operators. In addition, the
transformations on the matrix affect path components constructed after the
transformation. Even if a path is only partially constructed when a transforma-
tion is invoked, the parts of the path that were in place before the transformation
will be unaffected.

Rotate

The rotate operator takes a single, numerical operand. This operand specifies
how many degrees to rotate the user space around its origin (positive values
specify counter clockwise rotations). This transform allows you to do some
pretty neat tricks. For example, let’s say you have written a routine to draw
some complex shape; and you have found that you need to draw it several times
at different angles. In a more primitive graphics system, you might need to
re-write to routine to take an angle as an argument, but in PostScript you only
need to rotate the coordinates with the rotate operator.

As a concrete example, let’s say you want to draw lines in a circular pattern
so that each line is ten degrees from its neighbors. Rather than figure out the
coordinates for each of the 36 lines, we can just draw a horizontal line and rotate
it repeatedly to different angles. To do the repeated looping, we can use the for
operator. The for operator takes four arguments: an initial index value, a step
size, a final index value, and a procedure. The operator increments an index
from the initial value to the final value, incrementing it by the step size. For
each index value, for will push the index on the stack and execute the procedure.
This gives you a simple means of looping.

We start by setting up the for loop. At the beginning of the loop’s procedure,
we start a new path and save the graphics state.

0 10 360 { % Go from 0 to 360 degrees in 10 degree steps
newpath % Start a new path
gsave % Keep rotations temporary

We next set the start of the line to (144, 144) and rotate the coordinates, we
do not rotate before moving because (144, 144) would then be in a different
location.

144 144 moveto
rotate % Rotate by degrees on stack from 'for'

We next draw just a horizontal line:
72 0 rlineto
stroke

13

Finally, we restore the old graphics state and end the loop.
grestore % Get back the unrotated state

} for % Iterate over angles

Translate

The translate operator takes two operands: an x-coordinate, and a y-coordinate.
The translate operator sets the origin of user space to the point that was at the
given coordinates in user space. The main use of the translate is to draw copies
of a shape in different locations. Typically, a shape will be constructed at the
origin, and the shape will be translated to the correct location before it is to
be drawn. A simple example translates a box constructed at the origin to the
point (72, 72) in the original user space.

Scale

The scale operator takes two arguments: an x scale factor, and a y scale factor.
The operator scales each coordinate by its associated scale factor. That is, if
you have an x scale factor of 0.5 and a y scale factor of 3, the x coordinate
will be reduced by a factor of two while the y coordinate will be magnified by
a factor of 3. This operator allows you to change the size and dimensions of
objects quite easily.

A simple example can just scale text in a couple of ways: We can make things
narrow:

gsave
72 72 moveto
0.5 1 scale % Make the text narrow
(Narrow Text) show % Draw it

grestore

We can make things tall:
gsave

72 144 moveto
1 2 scale % Make the text tall
(Tall Text) show % Draw it

grestore

We can distort the text completely:
gsave

72 216 moveto
2 0.5 scale % Make the text wide and short
(Squeezed Text) show % Draw it

grestore

14

Combining Transformations

Each of these transformations merely modifies the current transformation ma-
trix. This means that these operators can be combined for some interesting
effects. For example, you can take a normal document and print two of its
pages on a single page (reduced and placed side-by-side) simply by translating
the first page to one side, rotating the page by ninety degrees and then reducing
the page so that it fits. The second page is handled in the same manner, but is
translated to the other side of the page. This can be easily done by PostScript
post-processors so long as they know where one page ends and the next begins
(this is often accomplished using special comments). A somewhat simpler ex-
ample is to draw a simple box and some text translated, rotated, and scaled in
various ways. An important thing to remember when viewing this example is
that translations are always relative to the current user space. This means that

0.5 0.5 scale
72 72 translate

will have a different effect on the image than does
72 72 translate
0.5 0.5 scale

In the first case, the origin will be half an inch in from the bottom and left
margins. In the second case, the origin will be an inch in from the two margins.

Clipping for Effect

Within the graphics state of a PostScript system is a special path called the
clipping path. Every bit of ink to be placed on the page is checked against this
path. If PostScript determines that the ink would go outside the current clipping
path, that portion of ink is ignored. If the ink would be within the clipping path,
it is actually placed on the page. For the mathematically inclined, the clipping
process is intersection: the set of pixels to be painted is intersected with the set
of pixels within the current clipping path to get the set of pixels to paint. For
objects that are partly inside and partly outside the clipping path, the natural
implication is that only the part that is within the clipping path is drawn.

By default, the clipping path is defined to be a rectangle just within the bound-
ary of the page (usually it is set to about a quarter of an inch). You can set
your own clip path by constructing the path with the normal path construction
operators and invoking the clip operator. There is only one difficulty: once you
reduce the size of the current clipping path, there is no way to expand the size
of the clipping path with clip. The only way to go back to a larger clipping path
is to save the one you would like to restore with gsave and restore it later with
grestore. In fact, it is always good policy to only set a clipping path withing a
bracketing gsave/grestore pair. You will always be safe if you do this.

15

Clipping a Simple Path

As a simple example of clipping, let us say that we want to draw a box and fill
it with text in such a way that some text is cut off. The effect we are wanting
is that of a hole in a piece of paper over some newsprint, say. This can be done
quite simply.

First, we set up the box to act as our window. We can set up the path, stroke
it if we want to see it, and then clip to it:

gsave % Save the old clip path
72 72 box % Set up our box
gsave % Don't allow box to be lost after stroke

stroke
grestore % Restore the box path
clip % Clip to the box

The clip path is now established, and we can now go on to draw the text that
should be clipped (note that there is a leading gsave… this is to keep us from
loosing our old clip path which covered the whole page).

60 60 moveto
(This is Times-Roman clipped to a box) show
70 90 moveto
(This is Times-Roman clipped to a box) show
50 120 moveto
(This is Times-Roman clipped to a box) show

Once we have finished, we can just do a grestore to clean up after ourselves.

While there are some implementation limitations on the complexity of the clip
path, in general you can have very complex paths… not just squares. Arcs, lines,
even text can be used to create the clip path.

Clipping to Text

There may come a time when you will want to do some special effects with text.
For example, you might want to print out “July 4” using letters that look like
the flag. This is fairly easy to do using clipping. A somewhat simpler problem
would be to draw text that looks like a sunburst (that is, the text is filled with
a sunburst pattern). This is also fairly easy to do once you know how to clip
to text. The secret is an operator called charpath. This operator takes a string
and a Boolean and builds the path at the current point that would trace out
the text of the string. The path, once created, can be stroked, filled, clipped, or
any other combination of things; it is, after all, just a path. The Boolean which
charpath requires is for handling special kinds of fonts, and it is generally left
true.

As before, the steps to this example are to build the path, clip to it, and draw
the image needing to be clipped.

Here we build the path by setting up our current point and string, and then
invoking charpath:

16

gsave % Save old clip path
/Times-Roman findfont 60 scalefont setfont
72 72 moveto (Clipping) true charpath % Set up the text's path

Once we have the path, we can invoke clip to establish the complex path of the
text as the current clip path. With the clip path established, we can draw our
sunburst, which will be confined to the area inside the text:

174 72 translate % Set our origin to middle
0 2 360 { % For every second degree of circle

newpath
gsave

rotate % Rotate to angle
0 0 moveto % From new origin
300 0 rlineto % Setup a 300 point long line
stroke % ... and draw it

grestore
} for

Again, because of our judicious use of gsave and grestore, a simple grestore
cleans up the graphics state when we’re done.
grestore

As you might imagine, this sort of effect is very powerful and can make it very
easy for you to create some stunning images.

Raster Graphics

One of the common questions I have gotten over the years is how to handle
other graphics file formats in PostScript. People often ask about including
GIFs, JPEGs, and the like in a PostScript file. While this sort of thing is really
beyond the scope of this guide, the basics of handling so-called raster graphics
is not.

Raster Graphics Basics

Raster graphics is that style of graphics in which the image is broken up into a
matrix of picture elements (pixels). The matrix will have a certain number of
rows, each containing a certain number of pixels. Each pixel can be assigned
any of a number of colors. The number of colors depending upon the “depth” of
the image, often expressed as the number of bits needed to encode all the colors.
Typical bit depths used today are: 1 (two colors, usually black and white), 2
(four colors, usually shades of gray), 4 (16 colors), 8 (256 colors), 16 (65,536
colors), 24 (so-called true color), and 32 (more colors than you can shake a stick
at).

The numbers of rows and columns gives you the resolution. If there are c
columns and r rows, the image is referred to as a r x c image. If the image is to
have a certain physical size, this size combined with the number of pixels give
you the number of dots-per-inch (DPI) of the image, which is a measure of its

17

resolution. The higher the DPI, the smaller the dots, and the harder it is to see
them as individuals.

Raster graphics are convenient in that they can represent photo-realistic images
quite easily, but they have limitations. Because the pixels are arranged in a
regular pattern, weird moire patterns can appear if they are displayed on a
monitor incorrectly, or if they represent an image with a regular pattern that
interacts badly with the pattern of the pixels. Likewise, if the resolution is too
low and the contrast is too high, certain pixels can stand out and leave the
image with the “jaggies.”

Raster Graphics in PostScript

Most graphics work in PostScript is done in vector graphics style. This style of
graphics is where the image is composed of lines and curves that are described
mathematically. It is the style of graphics we have used throughout the guide.
The advantage of vector graphics is that you can do all sorts of mathematical
operations on the image (rotate, scale, etc.) and still get a decent image. An
implication of this is that vector graphics are device independent, since they
do not care about the display resolution of the display device. Still, PostScript
recognizes the need for support of raster graphics, and so it provides a set of
operators just to display raster graphics.

The main operator is image, and it is fairly complex. Go grab yourself a cup of
coffee, stretch your legs, and prepare to tuck in.

image takes five arguments that describe the image to be displayed and paints
that image in a square with one corner at (0, 0) and the other at (1, 1) in the
current coordinate frame. All the operands describe the image data and how
it should be used to fill up that square. Of course, you probably do not want
to draw images in the unit square at (0, 0) all the time, so you must use scale,
rotate, and translate to move the unit square to the desired location (and size).

The image operator is used in the following way: width height depth matrix data
image -. The operands width and height define the size and shape of image
matrix in terms of pixels (in the image data, not the display results). The
operand depth describes the number of bits per pixels and, hence, the number
of shades of gray. Legal values here are 1 (black and white), 2 (four shades),
4 (16 shades), 8 (256 shades), and 12 (4,096 shades). The operand matrix is
a PostScript transform matrix that maps from the unit square to the image’s
pixel coordinates. The image’s coordinates go from (0, 0) in the lower left to
(width, height) in the upper right. The last operand, data is the source of the
actual image data. In Level 1 PostScript, this is a procedure, but it can be
any number of things in Level 2 and Level 3. Just sticking with Level 1 for
now, this procedure is called to fetch all the data for the image, as needed.
The procedure returns a string, and the bits within the string are taken and
dismantled to create the image. If the procedure does not return enough data
to cover the whole image, it is called repeatedly until all the pixels are accounted
for. The order at which the pixels are handled is left to right, bottom to top.

Clear? I didn’t think so. Let’s take a look at a simple example that will show

18

you the basics. Let’s draw a simple smiley face. First, let’s take a look at how
the smiley face will be laid out in the matrix:

. . X X X X . . C3

. X X . BD
X . X . . X . X 5A
X X 7E
X . X . . X . X 5A
X . . X X . . X 66
. X X . BD
. . X X X X . . C3

The left eight columns are the eight columns of the image. The “X” represents
a black pixel, and the “.” represents a white pixel. Since black is represented
by a 0 in PostScript, and white by a 1, we can convert this 8x8 matrix into
an eight byte sequence. The ninth column is the hexadecimal encoding of the
row… taking the others columns as a binary number with the dots representing
1’s and the X’s representing 0’s.

Now, let’s take this image data and try to build up an actual image. First, we
need to map the unit square to the location we want to show the image in. Let’s
make the image a 1 inch square image with the lower left corner at (72, 72).
gsave % We're mucking about with graphics state... save the original

72 72 translate % position the lower left at (72, 72)
72 72 scale % make the image 1 inch square

Now, we set up the actual image data.
8 % 8 columns in the image
8 % 8 rows in the image
1 % 1-bit per pixel: black and white
[8 0 0 8 0 0] % map the unit square to (0, 0) - (8, 8)
{<c3bd665a7e5abdc3>} % the image data as a hex-encoded string
image % actually draw the image

grestore

Note that the pixel data maps left to right the same way the bits do when you
write them in binary. That is, the left-most pixel for a given byte in the data
maps to the left-most bit in the byte. Also, note the funny way the string is
specified. It is written in hexadecimal using the < and > notation instead of the
more usual parenthesis notation. This notation indicates that what is contained
between the < and > is a string of 8-bit data bytes encoded in hex. You will
see this notation fairly often in working PostScript, since it is a convenient way
to store binary data in an ASCII format.

A Gradient

This example is all well and good, but it is just black and white. How do
you deal with gray scale images? The procedure is similar, you just specify a
different bit depth and lay out your data in a slightly different manner (instead

19

of a single bit per pixel, you will now need to map multiple bits per pixel. As an
example, let’s try to make a horizontal gradient fill that goes through sixteen
different shades:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sixteen different shades implies 4 bits per pixel, which means that this data can
be represented in 8 bytes again (2 pixels per byte). Encoded in hexadecimal
again, the data for the above gradient is: 0123456789ABCDEF. Now, we just
need to do with this data what we did before, with one exception. The image
data no longer represents an 8x8 image, instead it represents a 16x1 image that
is 4 bits deep… we need to modify the settings accordingly. Also, instead of
scaling this image to a 1 inch square, let’s make it 2 inches high by 1 wide and
set it next to the smiley face:
gsave

216 72 translate % lower-left of images at (216, 72)
72 144 scale % size of rendered image is 72 points by 72 points
16 % 16 pixels wide
1 % 1 pixel high
4 % 4 bits per pixel
[16 0 0 1 0 0] % transform array... maps unit square to pixels
{<0123456789ABCDEF>} % the image data itself
image % let's draw!

grestore

Note that, even though the image data is for a one line image, we can scale
that single line to fill just about any area. By the way, drawing with the image
operator is very much like drawing with any other operator. In particular,
clipping can be used to control what parts of the page can be filled by image,
so you can use it to do interesting effects like shapes (or text) with gradient fills
or with a photographic image as a fill pattern.

The Basics of Color

So, these examples are nice and all, but they are in dull monochrome. What if
you want to do color? PostScript does include a handy operator for color images
called, creatively enough colorimage. The colorimage operator adds a number
of operands to handle the addition of color and to provide for a number of ways
of supplying the color data.

The first thing to consider is how you want to specify the colors. Is your image
grayscale? RGB? CMYK? This information will indicate the number of color
channels you need. Grayscale takes one. RGB takes three (one for red, one for
green, and one for blue). Finally, CMYK takes four: cyan, magenta, yellow,
and black. Next, you need to think about how these channels are going to be
provided to the colorimage operator; will they be interleaved into a single data
source string, or will they be broken out into separate data sources. These two
decisions will determine the number of additional operands to colorimage: one

20

specifies the number of channels, one specifies whether the channels are separate
or interleaved, and then there is one for each channel data source.
To make this a bit more concrete, let’s take a look at a color gradient, which
will be a variant of the previous gradient:

Gradient: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Red: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Green: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Blue: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

So, we will now lay this information out in a very similar manner to the original
gradient. The example, however, will use three color channels, and they will be
provided by separate data sources:
gsave

360 72 translate % set lower left of image at (360, 72)
72 144 scale % size of rendered image is 72 points by 72 points
16 % number of columns per row
1 % number of rows
4 % bits per color channel (1, 2, 4, or 8)
[16 0 0 1 0 0] % transform array... maps unit square to pixels
{<0000000000000000>} % the red image data
{<FEDCBA9876543210>} % the green image data
{<0123456789ABCDEF>} % the blue image data
true % pull channels from separate sources
3 % 3 color channels (RGB)
colorimage

grestore

Note that the bits-per-pixel operand is really a bits-per-pixel-per-channel
operand. This is really no different than for image, it is just that image always
works with a single channel. In fact the call:

w h bpp matrix data image

is exactly equivalent to:
w h bpp matrix data true 1 colorimage

Wrap-up

You have now seen a basic example of three different types of raster graphics in
PostScript (you can view a complete example of all three). This is only a start,
however.

21

Encapsulated PostScript

What is Encapsulated PostScript?

At some point, you may want to include some nice PostScript image into a
document. There are a number of problems associated with this, but the main
one is that your page layout program needs to know how big the image is,
and how to move it to the correct place on the page. Encapsulated PostScript
(EPS) is that part of Adobe’s Document Structuring Convention that provides
this information.

What Is the Document Structuring Convention?

The DSC is a special file format for PostScript documents. The full details for
the DSC can (and should) be gotten from Adobe. If you are writing a PostScript
printer driver or other utility which will be used by a large number of people to
create or manipulate PostScript documents, do not even think about writing it
without making it DSC-compliant. You will save yourself and your users a lot
of headaches.

Although the full DSC is beyond the scope of this guide, the most basic rules can
be explained. A DSC-compliant document is an ordinary PostScript document
with a number of comments added. These comments provide information to
any post-processors which work with the files. Some comments strictly provide
information, others are used to structure the document into sections, which may
be shuffled or processed in other ways by the post-processor.

Every DSC-compliant document is indicated by having the comment
%!PS-Adobe 3.0 as the first line. This comment is a flag to indicate
that the document is compliant. You should never use this comment unless
your document really is DSC compliant. There are many other parts to proper
DSC. A document which follows the DSC can be manipulated in many ways.
In particular, post-processors can shuffle the pages, print two or more pages
on a side, and so on. The printer drivers from some notable companies do not
follow the DSC, and their PostScript documents are, therefore, impossible to
work with once they’ve been generated.

Now, What About EPS?

An EPS file is a PostScript file which follows the DSC and which follows a couple
of other rules. These rules can be summarized as follows:

• The first line must be %!PS-Adobe EPSF-3.0
• The file must make use of the BoundingBox comment
• The file should be a single page image (in DSC terms, the %%Pages com-

ment must have a value of 0 or 1).
• The file should not use any operators which affect the global state.
• Finally, the EPS file should not use showpage. Actually, Adobe says that it

is fine to use showpage in your EPS files. Officially, it is the responsibility

22

of the importing application to redefine showpage so that the EPS file
does not actually eject the page. Still, in creating EPS files, it would be
wise not to use this operator.

BoundingBox

The BoundingBox comment is used in DSC to indicate where the actual image
will be on a page. The comment describes a rectangle which completely encloses
the image. The form of the comment is: %%BoundingBox: l lx lly urx ury.
For instance, suppose I have an image which extends from x=72 to x=144 and
from y=150 to y=170. The BoundingBox comment in the document should
then be: %%BoundingBox: 72 150 144 170.

Funky Stuff

There are often times when you will want to take an existing PostScript docu-
ment and manipulate it in some way. For example, you may be publishing a
book, and you want to print the pages with wide margins for proofing notes
(but you don’t want to modify the book’s layout). Maybe you are printing out
some 100-page manual, and you want to avoid using most of a rain forest to
print it. Maybe you want to print out some document with the word “Draft”
stamped beneath the pages. All of these things can be done in PostScript by
a post-processor (that is, a program which manipulates an existing PostScript
file). Moreover, these are all things which may be difficult to manage in the
program you used to generate the files.

In this section, I’ll show you the basic PostScript code to do each of these jobs
and how to use EPS comments to find the right places to insert the additional
PostScript.

You are welcome to use these programs as you will. Bear in mind, however,
that there are professionally written programs that do these jobs and more. I
strongly suggest that you look into buying such a program rather than writing
your own. Generally, they have already solved most of the problems. Also, these
packages usually come with tools you did not even know were possible. These
examples, therefore, are more to give you a taste of what is possible and how to
do it, in case you want to roll your own post-processing utility.

By the way, being an American who rarely gets out of the country (or, indeed,
off the sofa), I should warn you that both the “Galley Proofs” and “Two Up”
examples are set up for the U.S. Letter paper size (8.5 inches by 11 inches),
since this is the kind of paper I have and which my printer uses. They can be
adapted for other paper sizes, of course, just the particular scale factors and
translation coordinates will have to be adjusted appropriately.

• Galley Proofs
• Two Up
• Draft

23

Galley Proofs

A galley proof is a printout of a document in which the margins are especially
large. The idea is that you can read over what you have printed and have room
for writing comments. This system was important in the days of manuscripts
and lead-cast type, because the layout of your document was under the control of
the publisher’s typesetter. You would receive a galley proof from your publisher
and make comments about mistakes or changes to be made.

When you have control of the typesetting, galley proofs are not so important,
but you may still want to have them. Many systems will not let you make a
galley proof, but fortunately it is not hard to do.

The main idea is that you want to scale each page down (to make room for the
extra big margins) and then translate the document up and to the right.

Let us say that we want to give ourselves an extra inch of margin on the vertical
margins (and scale the horizontals to keep the proportions correct). Here is the
PostScript code to do that:

gsave
8.5 6.5 sub 2 div inch % Center page horizontally...
11 11 6.5 8.5 div mul sub 2 div inch % and vertically
translate
6.5 8.5 div % Scale page horizontally...
dup % and vertically
scale
% original page code here...

grestore

Here is a slightly faster version. Here, we allow the post-processor to do the
math for us. This will print more quickly, since each page does not need to do
its own division.

gsave
72 93 translate
.7647 .7647 scale
% original page code here...

grestore

Why the gsave and grestore? Well, a good rule of thumb is to always save the
graphics state before you go about changing it (and remember to restore it when
you are done). Also, one of the rules of the document structuring convention is
that each page should restore the state of the system to what it was when the
page was about to start. In other words, the code to layout a page should not
alter the permanent state of the system (graphics or otherwise). This assures
that pages can be reordered after the PostScript has been generated.

The Hard Part

The hard part of all of this is knowing where to insert the new code. Where
does one page begin and another end? You could look for calls to showpage,

24

but many programs define their own versions of this operator (in the code that
is generated by dvips, for instance, it is called eop).

So, how do we go about recognizing pages? The document structuring conven-
tions provide us with some handy comments for flagging page information. The
most important is the %%Page: comment. This comment specifies that the
next piece of code is the first one for the new page (in fact, it also tells you which
page it is). The end of the document should also be marked with a %%Trailer:
comment and a %%EOF comment. The %%Trailer: comment specifies that
code to be run at the end of the document is about to be given (so, we are done
with the pages). The %%EOF comment specifies that we are done with the
file. Again, this specifies that we have processed the last page.

So, using these comments, how can we add the needed PostScript? Well, we can
start by looking for the first %%Page: comment. When we find it, we insert
the translate and scale commands right after it. Thereafter, we will proceed
each %%Page: with a grestore and insert the translate and scale code after
the comment. This process continues until we find either a %%Trailer: or a
%%EOF comment. The first of these we find is proceeded by a grestore.

This is all we need to do. To make things a bit more concrete, here is a PERL
script to do the job (to make things a bit more interesting, I have added a light
line around the original page’s image, so you can know how big it is):
#!/usr/local/bin/perl
$flag = 0;
while (<>) {

if (/^%%Page:/) {
if ($flag) {

print "grestore\n";
}
$flag = 1;
print $_;
print "gsave 72 93 translate .7647 .7647 scale\n";
print "gsave .75 setgray newpath -1 -1 moveto 614 0 rlineto\n";
print "0 794 rlineto -614 0 rlineto closepath stroke grestore\n";

} elsif (/^%%Trail/) {
if ($flag) {

print "grestore\n";
}
print $_;
$flag = 0;

} elsif (/^%%EOF/) {
if ($flag) {

print "grestore\n";
}
print $_;
$flag = 0;

} else {
print;

}
}

Now, this script is not perfect. Many PostScript files do not conform as they

25

should. This script can, however, serve as a starting point for your own, more
robust code.

Two Up

There are occasions when you might want to print more than one page of a
PostScript document on a piece of paper. For example, you may have a collection
of slides for a presentation, and you may want to print them out in condensed
form for a kind of digest hand-out. This kind of printing, where two pages are
printed side-by-side on a piece of paper is called “two-up,” for the two pages
facing up. This idea generalizes readily to any number of pages (though, of
course, legibility goes down quickly as the number of pages goes up). In its
general form, it is called “n-up.”

The PostScript

What is necessary to print in two-up mode? First, we need to translate and
rotate each page into the right location of the page, then we need to make sure
that the page fits in the new area reserved for it (we will need to scale it down
to about half its original size). If we place the two pages side by side, we will
get proper two-up form.

The code I will present here will place the odd pages on the left (as you’re
looking at the page in landscape orientation) and the even pages on the right.
You could do it the other way around, if that makes more sense to you.

Here is the code we must wrap around the odd pages:
gsave
504 30 translate % Position page in middle of region
90 rotate % Aim it in the right direction
.5 .5 scale % make it small enough
% original page code here...

grestore

And here is the code for the even pages:
gsave
504 426 translate % Position page in middle of region
90 rotate % Aim it in the right direction
.5 .5 scale % make it small enough
% original page code here...

grestore

Now, you will notice that I used some curious numbers in the translate command.
The reason I chose these particular numbers was that I wanted to center each
page in its half of the page. I knew I was going to scale by 0.5, so I computed
how much white-space was left and added in the appropriate fudge-factor to
center the pages.

You may also notice that I wrap a gsave and a grestore around the page and the
additional code? The reason for this is that each page must leave the state of

26

the printer unchanged when it has been printed. If you permanently change the
state, that state change will be in affect for all subsequent pages. By following
this rule, you make the pages independent of order. Some print servers must
shuffle page order in order to print the document correctly; since my pages are
independent (at least as far as my code is concerned), they will print correctly.

The Hard Part

Now comes the hard part of recognizing where the pages begin. The technique
is essentially the same as what we used for galley proofs, so I will spare you the
logic here. Essentially, we will look for %%Page: comments. We will, however,
need to keep track of whether the current page is an odd page or an even page
and insert the correct translation code. Also, as before, we must be careful
about inserting grestores before subsequent pages and before the %%Trailer
or %%EOF comments.

Here is the PERL script to do the job:
#!/usr/local/bin/perl
$flag = 0; # We have not yet found a page
$even = 0; # First page is an odd page
$page = 1; # Start at page #1
$pages = 1; # Allow %%Pages comment
while (<>) {

if (/^%%Pages:/ && $pages) {
print "%%Pages: (atend)\n";
$pages = 0;

} elsif (/^%%Page:/) { # We have found a page
if ($flag) {

print "restore\n"; # restore if it isn't the first
}
$flag = 1;
if ($even) { # Translate for even pages

print "save\n"; # gsave
print "504 426 translate\n";
$even = 0;
$page++;

} else { # Translate for odd pages
printf("%%%%Page: %d %d\n", $page, $page);
print "save /showpage {} def\n";
print "504 30 translate\n";
$even = 1;

} # Code to rotate and shrink
print "90 rotate .5 .5 scale\n";

} elsif (/^%%Trail/) { # Cleanup if a %%Trailer is found
if ($flag) {

print "restore\n";
}
print $_;
printf("%%%%Pages: %d\n", $page);
$flag = 0;

} elsif (/^%%EOF/) { # Cleanup if an %%EOF is found
if ($flag) {

27

print "restore\n";
}
print $_;
$flag = 0;

} else {
print;

}
}

Note the basic similarity with the script for the galley proofs. There are some
additions, however. Because we are taking two pages and printing them on one
page, we need to modify the page numbers. The %%Pages: comment specifies
how many pages are in the document. If you specify “%%Pages: (atend)”, you
are specifying that you do not know the exact number of pages, but you will
give the information later.

An additional complication is the use of save and restore rather than gsave
grestore. These operators save the entire state of the printer and restore it just
as gsave and grestore work with the graphics state. In fact, an implicit gsave is
done by save; and an implicit grestore is done by restore. The reason these are
used is so that I can redefine showpage to a do-nothing procedure (/showpage
{} def) for the odd pages. This trick prevents the page from being ejected when
the odd page does its end of page routines. Unfortunately, this trick only works
if the document calls showpage by name. If the document bound showpage up
or calls some of the lower level operators, this program would need to be more
sophisticated.

Draft

There are times when you will need to stamp a document as a draft. That is,
you will want to mark the document so that no one can mistake it for a finished
document, but you do not want to make it illegible. Watermarks are perfect for
this task.

A watermark is any marking which appears behind the text of the page and is
generally quite light in appearance. The main text of the page should be legible
above it, and the watermark should be visible beneath.

The PostScript

The PostScript for generating a watermark is quite simple. After each
%%Page: comment (and before the actual PostScript code for the page, you
should insert the code to draw the watermark (safely wrapped between a gsave
and grestore pair.

As a concrete example, let us say we want to print the word “Draft” down the
page beneath the actual text of the page. Such a watermark would be suitable
for printing drafts of documents.

Here is the PostScript code to print the watermark:

28

gsave
.75 setgray
/Helvetica-Bold findfont 72 scalefont setfont
80 80 800 {
306 exch moveto % move to the center of the line
(Draft) dup
stringwidth pop 2 div neg 0 rmoveto % Center the text horizontally
show % Show the text

} for % and keep doing it
grestore

The Hard Part

The hard part of the job is to find the pages. Fortunately, we can use the same
technique we used for the galley proofs. Actually, our requirements are simpler.
We do not need to wrap the original page code in a gsave, grestore pair, as we
did before.

And here is the PERL script to do the job:
#!/usr/local/bin/perl
$flag = 0;
while (<>) {

if (/^%%Page:/) {
if ($flag) {

print "grestore\n";
}
$flag = 1;
print $_;
print "gsave\n";
print ".75 setgray\n";
print "/Helvetica-Bold findfont 72 scalefont setfont\n";
print "80 80 800 { 306 exch moveto\n";
print "(Draft) dup\n";
print "stringwidth pop 2 div neg 0 rmoveto show } for\n";
print "grestore\n";

} else {
print;

}
}

Index of Examples

• Clipping Text to a Box
• Clipping to text
• Drawing a box
• Drawing a box with rlineto
• Filled box
• Text
• Color
• Rotation

29

• Scale
• Shade and Width
• Transformations
• Translate
• Drawing a Raster Image

Clipping Text to a Box

%!
% operator box: xcoord ycoord box -
% Creates one inch box at xcoord, ycoord
/box {

newpath
moveto
72 0 rlineto
0 72 rlineto
-72 0 rlineto
closepath

} def

/Times-Roman findfont 30 scalefont setfont

gsave % Save the old clip path
72 72 box % Set up our box
gsave % Don't allow box to be lost after stroke

stroke
grestore % Restore the box path
clip % Clip to the box

60 60 moveto
(This is Times-Roman clipped to a box) show
70 90 moveto
(This is Times-Roman clipped to a box) show
50 120 moveto
(This is Times-Roman clipped to a box) show

grestore % Get the clip path back

showpage

Clipping to Text

%!
gsave % Save old clip path

/Times-Roman findfont 60 scalefont setfont

72 72 moveto (Clipping) true charpath % Set up the text's path
clip % Clip to it

174 72 translate % Set our origin to middle
0 2 360 { % For every second degree of circle

30

newpath

gsave
rotate % Rotate to angle
0 0 moveto % From new origin
300 0 rlineto % Setup a 300 point long line
stroke % ... and draw it

grestore
} for

grestore % Restore old clip path

showpage

Drawing a Box

%!
%% Draws a one square inch box and inch in from the bottom left

/inch {72 mul} def % Convert inches->points (1/72 inch)

newpath % Start a new path
1 inch 1 inch moveto % an inch in from the lower left
2 inch 1 inch lineto % bottom side
2 inch 2 inch lineto % right side
1 inch 2 inch lineto % top side
closepath % Automatically add left side to close path
stroke % Draw the box on the paper
showpage % We're done... eject the page

Drawing a Box with rlineto

%!
%% Draws a one square inch box and inch in from the bottom left
%% This example uses relative coordinates on the lines

/inch {72 mul} def % Convert inches->points (1/72 inch)

newpath % Start a new path
1 inch 1 inch moveto % an inch in from the lower left
1 inch 0 inch rlineto % bottom side
0 inch 1 inch rlineto % right side
-1 inch 0 inch rlineto % top side
closepath % Automatically add left side to close path
stroke % Draw the box on the paper
showpage % We're done... eject the page

Filled Box Example

%!

31

%% Draws a one square inch box and inch in from the bottom left

/inch {72 mul} def % Convert inches->points (1/72 inch)

newpath % Start a new path
1 inch 1 inch moveto % an inch in from the lower left
2 inch 1 inch lineto % bottom side
2 inch 2 inch lineto % right side
1 inch 2 inch lineto % top side
closepath % Automatically add left side to close path
fill % Fill in the box on the paper
showpage % We're done... eject the page

Text Example

%!
% Sample of printing text

/Times-Roman findfont % Get the basic font
20 scalefont % Scale the font to 20 points
setfont % Make it the current font

newpath % Start a new path
72 72 moveto % Lower left corner of text at (72, 72)
(Hello, world!) show % Typeset "Hello, world!"

showpage

Color

%!

% Convert inches->points (1/72 inch)
/inch {72 mul} def

% Build a 1 inch square path
/box {

newpath
moveto
1 inch 0 inch rlineto
0 inch 1 inch rlineto
-1 inch 0 inch rlineto
closepath

} def

% Pick a font
/Helvetica findfont 24 scalefont setfont

gsave
72 72 box % Build a box
1 0 0 setrgbcolor % Set the color to full red
fill % Fill the box

32

grestore

gsave
154 72 box % Build a box
1 0 0 setrgbcolor % Set the color to full red
stroke % Outline the box

grestore

gsave
1 0 0 setrgbcolor % Set the color to full red
236 72 moveto
(Full Red) show % Print some text

grestore

gsave
72 154 box % Build a box
1 0.5 0 setrgbcolor % Set the color to orange
fill % Fill the box

grestore

gsave
154 154 box % Build a box
1 0.5 0 setrgbcolor % Set the color to orange
stroke % Outline the box

grestore

gsave
1 0.5 0 setrgbcolor % Set the color to orange
236 154 moveto
(Orange) show % Print some text

grestore

gsave
72 236 box % Build a box
1 0 1 0.5 setcmykcolor % Set the color to dark green
fill % Fill the box

grestore

gsave
154 236 box % Build a box
1 0 1 0.5 setcmykcolor % Set the color to dark green
stroke % Outline the box

grestore

gsave
1 0 1 0.5 setcmykcolor % Set the color to dark green
236 236 moveto
(Dark Green) show % Print some text

grestore

showpage

33

Rotation Example

%!
% Example of rotation... draws 36 lines in a circular pattern

0 10 360 { % Go from 0 to 360 degrees in 10 degree steps
newpath % Start a new path

gsave % Keep rotations temporary
144 144 moveto
rotate % Rotate by degrees on stack from 'for'
72 0 rlineto
stroke

grestore % Get back the unrotated state

} for % Iterate over angles

showpage

Scale

%!
% Example of scaled image (text)

/Times-Roman findfont 40 scalefont setfont

gsave
72 72 moveto
0.5 1 scale % Make the text narrow
(Narrow Text) show % Draw it

grestore

gsave
72 144 moveto
1 2 scale % Make the text tall
(Tall Text) show % Draw it

grestore

gsave
72 216 moveto
2 0.5 scale % Make the text wide and short
(Squeezed Text) show % Draw it

grestore

showpage

Shade and Width Example

%!
% Demonstrate shading and width in drawing lines and filling shapes

34

% Define an operator box which builds a path for a one inch square box
% Note that box does not draw or fill the box.

/box {
newpath
moveto % Current point is on stack
0 72 rlineto % Left
72 0 rlineto % Top
0 -72 rlineto % Right
closepath % Bottom

} def

0 setgray % 100% black
1 setlinewidth % One point thick lines
72 72 moveto 72 144 lineto stroke % Draw a one inch line

gsave % Save a copy of the current settings
0.5 setgray % 50% black
10 setlinewidth % 10 point wide lines
144 72 moveto 144 144 lineto stroke % Draw a one inch wide line
216 72 box % Build a square path...
0.35 setgray % make it a little darker...
fill % and fill it.

grestore % Go back to the original settings

3 setlinewidth % Make the box lines wider
300 72 box stroke % Draw a black box

showpage

If you try this example, you should note a couple of things. Firstly, the black
outlined box is a little larger than the gray filled one. This extra width comes
from the 3 point wide lines used to draw it—they are centered about the path
of the box. The ink filling the gray box, however, is completely within the
path of the box. Also, when shading objects, you must be careful. PostScript
makes shades through a process called halftoning. Basically, uniform dots are
placed in various patterns to simulate different shades of grey. Unfortunately,
various considerations limit how many shades a printer can produce. So some
grey tones may come out the same. This may be the case with the filled box
and the outlined box when viewed on your screen or printer.

Transformations Examples

%!
% Example to demonstrate translate, rotate, and scale

% operator box: xcoord ycoord box -
% Creates one inch box at xcoord, ycoord
/box {

newpath
moveto
72 0 rlineto

35

0 72 rlineto
-72 0 rlineto
closepath

} def

% Specify font for text labels
/Helvetica findfont 40 scalefont setfont

gsave
40 40 translate % Set origin to (40, 40)
0 0 box stroke % Draw box at new origin...
77 0 moveto
(Translated) show % and label

grestore

gsave
100 150 translate % Translate origin to (100, 150)
30 rotate % Rotate counter-clockwise by 30 degrees
0 0 box stroke % Draw box...
75 0 moveto
(Translated & Rotated) show % and label

grestore

gsave
40 300 translate % Translate to (40, 300)
0.5 1 scale % Reduce x coord by 1/2, y coord left alone
0 0 box stroke % Draw box...
75 0 moveto
(Translated & Squished) show % and label

grestore

gsave
100 450 translate % Set origin to (300, 300)
30 rotate % Rotate coordinates by 45 degrees
0.5 1 scale % Scale coordinates
0 0 box stroke % Draw box
75 0 moveto
(Everything) show

grestore

showpage

Translate

%!
% Draw a box at 72, 72 using translate

% operator box: xcoord ycoord box -
% Creates one inch box at xcoord, ycoord
/box {

newpath
moveto
72 0 rlineto

36

0 72 rlineto
-72 0 rlineto
closepath

} def

gsave % Preserve the old coordinates
72 72 translate % Set origin to (72, 72)
0 0 box stroke % Draw the box at the new origin

grestore % Restore the old coordinates

showpage

Drawing a Raster Image

%!PS-Adobe-3.0

% A simple smiley face

gsave % We're mucking about with graphics state... save the original
72 72 translate % position the lower left at (72, 72)
72 72 scale % make the image 1 inch square
8 % 8 columns in the image
8 % 8 rows in the image
1 % 1-bit per pixel: black and white
[8 0 0 8 0 0] % map the unit square to (0, 0) - (8, 8)
{<c3bd665a7e5abdc3>} % the image data as a hex-encoded string
image % actually draw the image

grestore

% A 16-shade horizontal gradient

gsave
216 72 translate % lower-left of images at (216, 72)
72 144 scale % size of rendered image is 72 points by 72 points
16 % 16 pixels wide
1 % 1 pixel high
4 % 4 bits per pixel
[16 0 0 1 0 0] % transform array... maps unit square to pixels
{<0123456789ABCDEF>} % the image data itself
image % let's draw!

grestore

% A 16-tone color gradient from green to blue

gsave
360 72 translate
72 144 scale % size of rendered image is 72 points by 72 points
16 % number of samples per line
1 % number of lines
4 % bits per color channel (1, 2, 4, or 8)
[16 0 0 1 0 0] % transform array... maps unit square to pixels
{<0000000000000000>} % the red image data
{<FEDCBA9876543210>} % the green image data

37

{<0123456789ABCDEF>} % the blue image data
true % pull channels from separate sources

colorimage
grestore

Index of Operators

• add
• arc
• begin
• bind
• clip
• charpath
• closepath
• curveto
• def
• div
• dup
• end
• exch
• fill
• for
• findfont
• grestore
• gsave
• if
• ifelse
• index
• lineto
• moveto
• mul
• newpath
• pop
• restore
• rlineto
• rmoveto
• rotate
• save
• scale
• scalefont
• setfont
• setgray
• setlinewidth
• show
• showpage
• stroke
• sub

38

• translate

Frequently Asked Questions

I have received a number of questions from readers, and many of them are the
same. Since these seem to be popular questions, I thought I would list them
here, along with my usual answers. Of course, you will also find the FAQ7 for
the comp.lang.postscript Usenet group to be useful. There are far more FAQs
in that list than are here. By the way, if anyone knows of a better answer to
any of these question, let me know.

• Is there a utility to convert a PostScript file into my favorite word proces-
sors format?

• I have a Hawat-Pickford 520xz ink jet printer without PostScript, is there
anyway I can print PostScript files on it?

• Can you point me to a good previewer for my computer?
• Can you tell me X about Acrobat and PDF files?
• How do I print out a PostScript file from my computer?
• My company has an Acme Laz-o-Tron typesetter. We’re having problems

printing out a set of color separations for a TIFF photograph processed
by FotoWerks Pro+. Why are the separations coming out wrong?

• I’m looking at two printers, one has PostScript while the other does not.
Which should I buy?

• Is it possible to concatenate two PostScript files together into a single file?
• Is it possible to create a PDF from a PostScript file?

Is there a utility to convert a PostScript file into my favorite word
processors format?

Short answer: no.

Long answer: Maybe. There is a utility to convert PostScript files into ASCII
files (it tries to extract the text), but it can not work on every PostScript file.
The problem here is that PostScript is a full programming language, and there
are many ways to accomplish a given thing. It would be next to impossible for
a program to look at some piece of PostScript and decide what the contents
are. It would be possible to write a program which would accept some subset of
PostScript files and convert them to some useful format, but it would be difficult
to write (and it could not handle all possible PostScript files).

I have a Hawat-Pickford 520xz ink jet printer without PostScript, is
there anyway I can print PostScript files on it?

Yep. There are a number of PostScript interpreters which run on your com-
puter and can print out PostScript files. There are versions of these kinds of
utilities for the Mac and for DOS/Windows machines. I have never used one of
these utilities, so I can not recommend any particular one. Go to your friendly
neighborhood dealer or your favorite catalog to see what they have. There is a

7http://www.faqs.org/faqs/by-newsgroup/comp/comp.lang.postscript.html

39

http://www.faqs.org/faqs/by-newsgroup/comp/comp.lang.postscript.html

section in the PostScript FAQ on this issue. You may also want to have a look
at GhostScript8. GhostScript can print PostScript files on certain printers.

Can you point me to a good previewer for my computer?

My first recommendation is GhostScript9. Hey, it’s free; and it does a good job.
It is also able to convert PostScript files to a number of other graphics formats,
so it can be handy there. There are also a number of commercial previewers. I
have not used any of these commercial packages, so I can not recommend any
of them in particular.

Can you tell me X about Acrobat and PDF files?

Nope. I don’t know anything about Acrobat or PDF files. Check out the
Adobe10 website. You may find the information you need there.

How do I print out a PostScript file from my computer?

The procedures and tools vary, depending upon the machine. I’m going to
assume that you have a PostScript enabled printer and either received or wrote
the PostScript file (if you have the application that generated the file, you should
just use your application’s print command or menu).

DOS/PC Assuming your PostScript printer is on port LPT1: (it really doesn’t
matter), all you need to do is:
COPY FILE.PS LPT1:
where FILE.PS is whatever your file is.

Mac OS X Mac OS X comes with a built-in utility to convert PostScript files
to PDF. Just opening the PostScript file from the Finder is sufficient to
start the conversion. If you want to print the file and you do not have
a PostScript printer, you can just print the PDF file you got normally.
If you do have a PostScript printer, you will probably have to follow the
instructions for Unix below.

UNIX and its cousins Depending upon your system, just printing the file as
if it were a text file should send it to the printer correctly. Most UNIX
systems are clever enough to recognize the PostScript file from the %!
comment at the beginning of the file. For example, on a BSD system:
lpr file.ps
should do the trick.

My company has an Acme Laz-o-Tron typesetter. We’re having prob-
lems printing out a set of color separations for a TIFF photograph
processed by FotoWerks Pro+. Why are the separations coming out
wrong?

Beats me.

I’m afraid the basic fact of the matter is that I’m not very bright. Nope. Nope.
Nope. I’m not very bright. I also don’t know a heck of a lot (you know, there’s
a joke: a dog, sitting in front of a computer says to his doggy friend, “You know,
on the Internet, no one knows you’re a dog…” for “a dog” substitute “not an

8http://www.cs.wisc.edu/~ghost/index.html
9http://www.cs.wisc.edu/~ghost/index.html

10http://www.adobe.com

40

http://www.cs.wisc.edu/~ghost/index.html
http://www.cs.wisc.edu/~ghost/index.html
http://www.adobe.com

expert,” and you’ve got something). I do know a fair amount about PostScript.
Despite my deep and abiding love for fine typography, however, and despite the
fact that ink runs in my blood, I don’t know much about the printing industry
or of the equipment they use.

If you have questions about your software or your printer, I recommend con-
tacting the manufacturer or a posting a question to a newsgroup (if there is a
relevant one). I just do not know the particulars on different printers or software
(unless it’s something I own or use).

I’m looking at two printers, one has PostScript while the other does
not. Which should I buy?

This is a common and very good question (there is a related one on whether
or not to buy a PostScript extension for an existing printer). The answer, as it
usually does, boils down to a definite, “It depends.”

If your main printing task consists of printing the monthly report or letters
to clients, friends, family members, or whomever, then you will probably find
PostScript to be an extravagance. This is especially true if you have no interest
in mucking about with fonts or graphics. In other words, for light-duty, mainly
text, print once and send to whomever kind of work, the answer is, “No.”

If you are a desktop publisher, you are writing a book and want to send the book
to your publisher electronically, or you do a lot of graphics work and want the
graphics to look good regardless of the printer, the answer is yes. In all of these
cases, you have a complex printing task and may want to proof your document
at home or in the office but then send it out for final (higher quality) printing.
Generally speaking, the same PostScript file will look the same regardless of
which PostScript printer you use, with one exception: if one printer is capable
of better print quality (finer lines, smoother curves, gentler shades of grey)
than the other, your document should benefit from these increased capabilities
without the PostScript file’s needing to be changed. You are benefiting from
PostScript’s device independence.

As for graphics intensive work, I find the EPS format to be the best for line
drawing type graphics (i.e. no bitmap images) that I will want to include in a
document. I very often want to print an image generated by one package when
the word processor may be from a different vendor. Many times (incredible to
tell) I sometimes need to include a graphic made on one computer system in
a document on a completely different system! In such a heterogeneous envi-
ronment, EPS graphics are just about the only reasonable option. Also, many
top-quality drafting/painting programs generate their best output in EPS (on
some windowing systems, the built-in graphic format can have a limited reso-
lution that results in badly displaced elements in a printed image). If you use
EPS graphics, you must have a PostScript enabled printer if you want to print
them out with any quality at all.

As with most things in our complex universe, it all depends upon what you are
going to do. You must sit down and evaluate your needs and probable work
habits. If you think you will benefit from PostScript’s unique characteristics
enough to justify the cost, then go for it.

Is it possible to concatenate two PostScript files together into a single

41

file?

Yes and no. If you do not care about being DSC compliant, then all you have
to do is to slap the two files together into one. If that does not work, you could
wrap each in a save/restore pair:
%!
save

% contents of the first file
restore
save

% contents of the second file
restore

The problem with this approach is that it is not compliant with the DSC, so you
can not do anything with the concatenated file. Previewers and print spoolers
will have problems recognizing pages and would not be able to shuffle them
appropriately. Other post-processing engines would fail to work with them too
(for instance, you would not be able to display the file in two up format.

If the two PostScript files are DSC compliant, came from the same tool, and
use the same resources (the acid test is if they have the same preamble… the
definitions at the start of the file before you get to the first page), then you
could concatenate the files by starting with the common preamble, followed by
the pages of the first file, followed by the pages of the second file. You would
have to recognize the pages by looking at the page comments much like we did
in the post-processing examples.

You can not play this trick with files from different tools (or with different
preambles). The problem is that a page in a file depends upon the definitions
in the preamble, if you miss a definition, or if two files have different definitions
for the same name, you really can not concatenate the files and keep the result
compliant with the DSC.

There are various scripts available out there to do the concatenation under
these restrictions. Look around for tools like “psmerge,” “psconcat,” and the
like, and see what might work for you (psmerge is part of the psutils package
and is available on many Unix work-alikes, and comes bundled with Mac OS
X).

Is it possible to create a PDF from a PostScript file?

Yes. GhostScript11 comes with a utility called ps2pdf which will do the job.
Also, Mac OS X has the ability built-in: just double-click on the PostScript file
in the Finder, and it will convert the file to PDF for you and give you an option
to save the results. I’m sure there are other tools to do the job, too.

Is it true that you are one of the most stunningly attractive men on the net?

Why, yes. How did you know?

Okay, so maybe no one has ever asked me that. It was worth a shot. Maybe
you wouldn’t have noticed.

11http://www.cs.wisc.edu/~ghost/index.html

42

http://www.cs.wisc.edu/~ghost/index.html

By the way, you finished reading the FAQ, so here’s a mailto link for you to
send me e-mail12 if you don’t see your question here.

PostScript Operators

Operator: add

num1 num2 add num3

This operator returns the addition of the two arguments.

• stackunderflow
• typecheck
• undefinedresult

See also:

• div
• mul
• sub

Operator: arc

x-coord y-coord r ang1 ang2 arc -

This operator adds an arc to the current path. The arc is generated by sweeping
a line segment of length r, and tied at the point (x-coord y-coord), in a counter-
clockwise direction from an angle ang1 to an angle ang2. Note: a straight line
segment will connect the current point to the first point of the arc, if they are
not the same.

• limitcheck
• stackunderflow
• typecheck

Operator: begin

dict begin -

This operator pushes the dictionary dict onto the dictionary stack. Where it
can be used for def and name lookup. This operator allows an operator to set
up a dictionary for its own use (e.g. for local variables).

Errors:

• dictstackoverflow
• invalidaccess
• stackunderflow
• typecheck

12mailto:pjw@tailrecursive.org?subject=First%20Guide%20to%20PostScript

43

mailto:pjw@tailrecursive.org?subject=First%20Guide%20to%20PostScript

Operator: bind

procedure1 bind procedure2

The bind operator goes through procedure1 and replaces any operator names
with their associate operators. Names which do not refer to operators are left
alone. Operators within procedure1 which have unrestricted access will have
bind called on themselves before they are inserted into the procedure. The new
procedure with operators instead of operator names is returned on the stack as
procedure2.

The main effect and use of this operator is to reduce the amount of name lookup
done by the interpreter. This speeds up execution and ties down the behavior
of operators.

Errors:

• typecheck

Operator: clip

- clip -

This operator intersects the current clipping path with the current path and
sets the current clipping path to the results. Any part of a path drawn after
calling this operator which extends outside this new clipping area will simply
not be drawn. If the given path is open, clip will treat it as if it were closed.
Also, clip does not destroy the current path when it is finished… it may be used
for other activities.

It is important to note that there is no easy way to restore the clip path to a
larger size once it has been set. The best way to set the clip path is to wrap it
in a gsave and grestore pair.

Errors:

• limitcheck

Operator: closepath

- closepath -

This operator adds a line segment to the current path from the current point to
the first point in the path. This closes the path so that it may be filled.

Errors:

• limitcheck

Also see the following operators:

• newpath
• moveto
• lineto

44

Operator: charpath

string bool charpath -

This operator takes the given string and appends the path which the characters
define to the current path. The result is can be used as any other path for
stroking, filling, or clipping.

The boolean argument informs charpath what to do if the font was not designed
to be stoked. If the boolean is true, the path will be modified to be filled and
clipped (but not stroked). If the boolean is false, the path will be suitable to
be stroked (but not filled or clipped).

• limitcheck
• nocurrentpoint
• stackunderflow
• typecheck

See also:

• clip
• fill
• show
• stroke

Operator: colorimage

width height bppc data_1 … data_n separate channels colorimage -

This operator draws a color image in the unit square from (0,0) to (1, 1). The
source information is a raster image width pixels wide by height pixels high.
The image is composed of channels color channels (1, 3, or 4), and each pixel
is represented by bppc bits in each channel. If separate is false, there will be
only one data operand. Otherwise, there will be one for each channel. The data
operand can be a number of things, but is usually a procedure that returns a
string of bytes with the channel data each time it is called. The procedure will
be called repeatedly until all pixels have been processed. The image is processed
from left-to-right, top-to-bottom.

• invalidaccess
• ioerror
• limitcheck
• rangecheck
• stackunderflow
• typecheck
• undefined
• undefinedresult

See also:

• image

45

Operator: curveto

x1 y1 x2 y2 x3 y3 curveto -

This operator draws a curve from the current point to the point (x3, y3) using
points (x1, y1) and (x2, y2) as control points. The curve is a Bézier cubic curve.
In such a curve, the tangent of the curve at the current point will be a line
segment running from the current point to (x1, y1) and the tangent at (x3, y3)
is the line running from (x3, y3) to (x2, y2).

• limitcheck
• nocurrentpoint
• stackunderflow
• typecheck

See also:

• arc
• lineto
• moveto

Operator: def

name value def -

This operator associates the name with value in the dictionary at the top of the
dictionary stack. This operator essentially defines names to have values in the
dictionary and is used to define variables and operators.

Errors:

• dictfull
• invalidaccess
• limitcheck
• stackunderflow
• typecheck
• VMerror

Operator: div

num1 num2 div num3

This operator returns the result of dividing num1 by num2. The result is always
a real.

• stackunderflow
• typecheck
• undefinedresult

See also:

• add
• mul

46

• sub

Operator: dup

object dup object object

This operate pushes a second copy of the topmost object on the operand stack.
If the object is a reference to an array, string, or similar composite object, only
the reference is duplicated; both references will still refer to the same object.

See also:

• exch
• index
• pop

Errors:

• stackoverflow
• stackunderflow

Operator: end

- end -

This operator pops the topmost dictionary off of the dictionary stack. The
dictionary below it becomes the new current dictionary.

Errors:

• dictstackunderflow

Operator: exch

value1 value2 exch value2 value1

This operator simply exchanges the top two items on the operand stack. It does
not matter what the operands are.

See also:

• dup
• index
• pop

Errors:

• stackunderflow

47

Operator: fill

- fill -

This operator closes and fills the current path with the current color. Any ink
within the path is obliterated. Note that fill blanks out the current path as if
it had called newpath. If you want the current path preserved, you should use
gsave and grestore to preserve the path.

Errors:

• limitcheck

Operator: findfont

name findfont font

This operator looks for the named font in the font dictionary. If it finds the
font, it pushes the font on the stack for later processing. It signals an error if
the font can not be found.

Errors:

• invalidfont
• stackunderflow
• typecheck

Also see the following operators:

• scalefont
• setfont

Operator: for

initial increment limit proc for -

This operator will execute proc repeatedly. The first time proc is executed, it
will be given initial as the top operand. Each time it is executed after that, the
top operand will be incremented by increment. This process will continue until
the argument would have exceeded limit.

• stackoverflow
• stackunderflow
• typecheck

See also:

• if
• ifelse

48

Operator: grestore

- grestore -

Sets the current graphics state to the topmost graphics state on graphics state
stack and pops that state off the stack. This operator is almost always used in
conjunction with gsave.

Operator: gsave

- gsave -

This operator pushes a copy of the current graphics state onto the graphics state
stack. The graphics state consists of (among other things):

• Current Transformation Matrix
• Current Path
• Clip Path
• Current Color
• Current Font
• Current Gray Value

gsave is typically used with grestore whenever you need to change the graphics
state temporarily and return to the original.

Errors:

• limitcheck

Operator: if

bool proc if -

This operator will execute proc if bool is true.

• stackunderflow
• typecheck

Operator: ifelse

bool proc1 proc2 ifelse -

This operator will execute proc1 if bool is true and proc2 otherwise.

• stackunderflow
• typecheck

Operator: image

width height bpp data image -

49

This operator draws a grayscale image in the unit square from (0,0) to (1, 1).
The source information is a raster image width pixels wide by height pixels
high. Each pixel is represented by bpp bits. The data operand can be a number
of things, but is usually a procedure that returns a string of bytes with the
grayscale data each time it is called. The procedure will be called repeatedly
until all pixels have been processed. The image is processed from left-to-right,
top-to-bottom.

• invalidaccess
• ioerror
• limitcheck
• rangecheck
• stackunderflow
• typecheck
• undefined
• undefinedresult

See also:

• colorimage

Operator: index

value_n … value_0 n index value_n … value_0 value_n

This operator grabs the nth item off the operand stack (item 0 is the one just
under the index you push on the stack for the operator) and pushes it on top
of the stack.

See also:

• dup
• exch
• pop

Errors:

• rangecheck
• stackunderflow
• typecheck

Operator: lineto

x-coord y-coord lineto -

This operator adds a line into the path. The line is from the current point to
the point (x-coord y-coord). After the line is added to the path, the current
point is set to (x-coord y-coord). It is an error to call lineto without having a
current point.

Errors:

• limitcheck

50

• nocurrentpoint
• stackunderflow
• typecheck

Also see the following operators:

• rlineto
• moveto
• rmoveto
• curveto
• arc
• closepath

Operator: moveto

x-coord y-coord moveto -

This operator moves the current point of the current path to the given point in
user space. If a moveto operator immediately follows another moveto operator,
the previous one is erased.

Errors:

• limitcheck
• stackunderflow
• typecheck

Also see the following operators:

• rmoveto
• lineto
• curveto
• arc
• closepath

Operator: mul

value1 value2 mul product

This operator multiplies the first two operands on the stack and pushes the
result back onto the stack. The result is an integer if both operands are integers
and the product is not out of range. If the product is too big, or one of the
operands is a real, the result will be a real.

Errors:

• stackunderflow
• typecheck
• undefinedresult

51

Operator: newpath

- newpath -

The newpath operator clears out the current path and prepares the system to
start a new current path. This operator should be called before starting any
new path, even though some operators call it implicitly.

Operator: pop

value pop -

This operator just removes the top-most item off of the operand stack.

See also:

• dup
• exch
• index

Errors:

• stackunderflow

Operator: restore

state restore -

This restores the total state of the PostScript system to the state saved in state.

Errors:

• invalidrestore
• stackunderflow
• typecheck

See also:

• save

Operator: rlineto

dx dy rlineto -

This operator adds a line into the path. The line is from the current point to a
point found by adding dx to the current x and dy to the current y. After line
is added to the path, the current point is set to the new point. It is an error to
call lineto without having a current point.

Errors:

• limitcheck
• nocurrentpoint
• stackunderflow

52

• typecheck

Also see the following operators:

• lineto
• moveto
• rmoveto
• curveto
• arc
• closepath

Operator: rmoveto

dx dy rmoveto -

This operator moves the current point of the current path by adding dx to the
current x and dy to the current y.

Errors:

• limitcheck
• stackunderflow
• typecheck

Also see the following operators:

• moveto
• lineto
• curveto
• arc
• closepath

Operator: rotate

angle rotate -

This operator has the effect of rotating the user space counter-clockwise by
angle degrees (negative angles rotate clockwise). The rotation occurs around
the current origin.

• rangecheck
• stackunderflow
• typecheck

See also:

• scale
• translate

Operator: save

- save state

53

This operator gathers up the complete state of the PostScript system and saves
it in state. Errors:

• limitcheck
• stackoverflow

See Also:

• restore

Operator: scale

sx sy scale -

This operator has the effect of scaling the user coordinates. All coordinates will
be multiplied by sx in the horizontal direction, and sy in the vertical.

The origin will not be affected by this operation.

• rangecheck
• stackunderflow
• typecheck

See also:

• rotate
• translate

Operator: scalefont

font size scalefont font

This operator takes the given font and scales it by the given scale factor. The
resulting scaled font is pushed onto the stack. A size of one produces the same
sized characters as the original font, 0.5 produces half-size characters, and so
on.

Errors:

• invalidfont
• stackunderflow
• typecheck
• undefined

Also see the following operators:

• findfont
• setfont

Operator: setfont

font setfont -

54

This operator sets the current font to be font. This font can be the result of
any font creation or modification operator. This font is used in all subsequent
character operations like show.

• invalidfont
• stackunderflow
• typecheck

Also see:

• findfont
• scalefont

Operator: setcymkcolor

cyan magenta yellow black setcymkcolor -

Sets the color of the ink to the color in the CYMK color space specified by cyan,
magenta, yellow, and black. The components must be between 0 (none) to 1
(full).

• stackunderflow
• typecheck
• undefined

See also:

• setgray
• setrgbcolor

Operator: setgray

gray-value setgray - This operator sets the current intensity of the ink to gray-
value. gray-value must be a number from 0 (black) to 1 (white). This will
affect all markings stroked or filled onto the page. This applies even to path
components created before the call to setgray as long as they have not yet been
stroked.

• stackunderflow
• typecheck
• undefined

See also:

• setcymkcolor
• setrgbcolor

Operator: setlinewidth

width setlinewidth - This operator sets the width of all lines to be stroked to
width, which must be specified in points. A line width of zero is possible and is
interpreted to be a hairline, as thin as can be rendered on the given device.

55

• stackunderflow
• typecheck

Operator: setrgbcolor

red green blue setrgbcolor -

Sets the color of the ink to the color in the RGB color space specified by red,
green, and blue. The components must be between 0 (none) to 1 (full).

• stackunderflow
• typecheck
• undefined

See also:

• setcymkcolor
• setgray

Operator: show

string show -

This operator draws the given string onto the page. The current graphics state
applies, so the current font, fontsize, gray value, and current transformation
matrix all apply.

The location for the text is set by the current point. The current point will
specify the leftmost point of the baseline for the text.

• invalidaccess
• invalidfont
• nocurrentpoint
• rangecheck
• stackunderflow
• typecheck

See also:

• charpath
• moveto
• setfont

Operator: showpage

- showpage -

This operator commits the current page to print and ejects the page from print-
ing device. showpage also prepares a new blank page.

56

Operator: stroke

- stroke -

This operator draws a line along the current path using the current settings.
This includes the current line thickness, current pen color, current dash pattern,
current settings for how lines should be joined, and what kind of caps they
should have. These settings are the settings at the time the stroke operator is
invoked.

A closed path consisting of two or more points at the same location is a degen-
erate path. A degenerate path will be drawn only if you have set the line caps
to round caps. If your line caps are not round caps, or if the path is not closed,
the path will not be drawn. If the path is drawn, it will appear as a filled circle
center at the point.

Errors:

• limitcheck

Operator: sub

num1 num2 sub num3

This operator returns the result of subtracting num2 from num1.

• stackunderflow
• typecheck
• undefinedresult

See also:

• add
• div
• mul

Operator: translate

x-coord y-coord translate -

This operator has the affect of moving the origin to the point (x-coord, y-coord)
in the current user space.

• rangecheck
• stackunderflow
• typecheck

See also:

• rotate
• scale

57

Errors You Might Encounter

configurationerror setpagedevice request can not be satisfied
dictfull dictionary is full
dictstackoverflow too many begins
dictstackundeflow too many ends
invalidaccess access attribute violated (e.g. attempted to write a read-only

object)
invalidfont bad font name or dictionary
invalidrestore the saved state object is too old to restore
ioerror some kind of error during input or output
limitcheck some implementation-dependent size restriction has been exceeded
nocurrentpoint the current point is not defined, yet
rangecheck operand is too big or too small
stackoverflow the stack was full before the last push
stackunderflow you tried to pop from an empty stack
syntaxerror PostScript’s syntax has been violated
typecheck operand is of the wrong type
undefined name is not defined in any dictionary on the stack
undefinedresult the result of the last numeric operation is invalid (e.g. divi-

sion by zero)
VMerror virtual memory full

String Escape Codes

\n Newline
\r Carriage return
\t Horizontal TAB
\b Backspace
\f Form feed
\\ Backslash
\(Left parenthesis
\) Right parenthesis
\ddd The character code ddd, where ddd is in octal.

In addition to these basic codes, a backslash just before a newline allows you to
break a string across two lines without inserting a newline into the string. That
is, the string:
(This is a \
string \
that has no \
newlines)

is equivalent to the string:(This is a string that has no newlines).

58

Forbidden Operators in EPS

Here is the list of operators which are not allowed within EPS files. The fact
that none of these operators are listed in my index of operators should tell you
something: they are not operators you would use very often, anyway. There is
also a list of operators you can use but you should probably avoid.

Forbidden Operators banddevice, clear, cleardictstack, copypage, erasepage,
exitserver, framedevice, grestoreall, initclip, initgraphics, initmatrix, quit,
renderbands, setglobal, setpagedevice, setshared, startjob

To Avoid nulldevice, setgstate, sethalftone, setmatrix, setscreen, settransfer,
undefinedfont

For more details, please see the red book.

PostScript Books

There are a number of good books on PostScript. If you do much PostScript
programming at all, I highly recommend that you get one of these print books.

PostScript Language Reference Manual: Third Edition This book is
put out by Adobe Systems Incorporated and is published by Addison
Wesley. It is the reference manual and pretty much defines the language.
The operator reference guide I have here pretty well follows Adobe’s
reference in this manual. Their reference is, however, far more detailed
(and accurate). This book is known as the “Red and White Book.” Adobe
also provides other books (including the “Blue” tutorial and cookbook).
The PLRM ’s ISBN is: 0-201-37922-8

PostScript Language Tutorial and Cookbook This book is also put out by
Adobe and is published by Addison Wesley. (Are you starting to see a
pattern here?) This is a very neat book on PostScript and gives a number
of handy examples (two which come to mind are a set of routines to set
text in a circle and a simple text formatter). This is the so-called blue
book. The ISBN is 0-201-10179-3.

Learning PostScript: a Visual Approach This book is a fine beginning
text for PostScript. The book emphasizes PostScript’s fantastic graph-
ics abilities while illustrating basic language constructs. The language
concepts are illustrated with graphic design examples, most of which you
will be tempted to use in your own documents. The book also includes a
number of interesting and useful utilities. Author: Ross Smith. Publisher:
Peachpit Press. ISBN 0-938-151-12-6. I do not know if this book is still
in print, but there are copies available on Amazon at the time I write this.
You can probably find it elsewhere, too.

Contacting Me

If you wish to contact me with a question, comment, or uncontrollable adula-
tion, please feel free to e-mail me. My address is pjw@tailrecursive.org. I

59

recommend that you check the FAQ first, however, since I have listed answers
for many of the common questions I’ve received. I must also warn you not to
expect a quick answer. I do not check my e-mail with notable frequency, so it
may be a while before I see your message.

About the Author

I was a graduate student at Indiana University in lovely Bloomington, Indiana.
While there, I learned to love the closure and learned to hate the PDP-8 (well,
not really).

Currently, I am wasting my talents as a software developer for a certain large
company in California you’ve all heard about and generally discovering to my
horror that Dilbert is 100% accurate. Still, as a compensation, I get to live on
the Pacific Rim.

60

	About this Document
	What is PostScript?
	Graphics Concepts
	Language Concepts
	Programming in PostScript
	Drawing and Filling Shapes
	Putting Text on the Page
	Adding Color
	Transformations
	Clipping for Effect
	Raster Graphics
	Encapsulated PostScript
	Funky Stuff
	Index of Examples
	Index of Operators
	Frequently Asked Questions

